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Abstract— Trajectory optimization are problems are a funda-
mental component of solving optimal control problems (OCPs)
on high-dimensional, complex robotic systems. It relies on two
key components: 1/ the transcription into a sparse nonlinear
program, and 2/ an appropriate algorithm which iteratively
computes a solution within a desired convergence threshold.
On one hand, differential dynamic programming (DDP) [1] is
an efficient framework for transcription and resolution of OCPs
as a finite-dimensional nonlinear program, which fully exploits
the sparsity structure induced by time. On the other hand, aug-
mented Lagrangian methods [2]–[4] provide a framework for
efficient algorithms that allow advanced constraint-satisfaction
strategies. In the sequel, we discuss our work on building
efficient algorithms for constrained trajectory optimization,
based on DDP and augmented Lagrangian methods, as well
as our upcoming C++ package for modelling and solving such
problems. The features of our methods include: targeting prob-
lems with both equality and inequality constraints, being able
to solve them within good accuracy, and being able to handle
multiple-shooting formulations naturally (including the use of
advanced implicit integrators e.g. variational integrators [5]).

I. INTRODUCTION

In recent work [6]–[8], new variants of DDP were intro-
duced; firstly for equality-constrained problems [6], [7] and
then with multiple-shooting capabilities for use with implicit
integrators (e.g. variational [5]) [7], based on augmented
Lagrangians. Then, further extensions to our framework were
made to include inequality-constrained problems [8], based
on a novel primal-dual augmented Lagrangian formulation
for constrained programming which has successfully been
used in quadratic programming [9].

a) Problem setting: A typical trajectory optimization
problem in continuous time can be formulated as the fol-
lowing infinite-dimensional problem:

min
x,u

∫ T

0

ℓ(t, x(t), u(t)) dt+ ℓf(x(T ))

s.t. ẋ(t) = f(x(t), u(t)), x(0) = x̄0

h(t, x(t), u(t)) ⩽ 0 (path constraints)
hT (x(T )) ⩽ 0

(1)
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b) Transcription: In [7], we argue that for stiff systems
(involving contact dynamics, for instance), it is desirable to
get increased numerical stability in integration rules, which
can be achieved by leveraging implicit numerical integrators
(such as the midpoint rule, the class of implicit Runge-
Kutta methods, or variational integrators like [5]). In general,
assuming the discrete sequence of states and controls are
{xk}Nk=0, {uk}N−1

k=0 respectively, an implicit integration rule
can be written in the form fd(xk, uk, xk+1) = 0 where the
superscript “d” means “discretised” (it will dropped in the
sequel). The equation above can be solved (using Newton-
Raphson for instance) to obtain the next state xk+1 from
(xk, uk). Some authors such as [10] solve for xk+1 and apply
the implicit function theorem to obtain the derivatives of the
mapping (xk, uk) 7→ xk+1, within a standard single-shooting
framework. In our approach, outlined below, we go for a
multiple-shooting formulation where dynamical feasibility is
only asked for at convergence of the algorithm.

The corresponding transcription of the OCP (1), including
the path constraints, reads:

min
x,u

J(x,u) =

N−1∑
k=0

ℓk(xk, uk) + ℓf(xN ) (2a)

s.t. fd(xk, uk, xk+1) = 0, x0 = x̄0 (2b)
hk(xk, uk) ⩽ 0 (2c)
hN (xN ) ⩽ 0. (2d)

II. PROPOSED METHOD

a) Backward sweep and Bellman equation: Our main
idea is to consider the dynamic programming principle or
Bellman equation for (2), which reads

Vi(x) = min
u,y

ℓ(x, u) + Vi+1(y)

f(x, u, y) = 0, h(x, u) ⩽ 0
(3)

with boundary condition VN (x) = ℓf(x). In the sequel, we
introduce the Q-function associated with the Lagrangian of
(3), where (λ, ν) are the dual variables:

Q(x, u, y, λ, ν) = ℓ(x, u)+Vi+1(y)+λ⊤f(x, u, y)+ν⊤h(x, u).
(4)

The Bellman equation then simply becomes the min-max
problem

Vi(x) = min
u,y

max
λ,ν:ν⩾0

Q(x, u, y, λ, ν). (5)
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This Bellman equation can be relaxed by using the classical
augmented Lagrangian method or the primal-dual augmented
Lagrangian method of Gill & Robinson [11], extended to
inequality constraints in [8] and [9]. This relaxation can be
seen as a proximal-point iteration on the dual problem to (3),
or in the dual variables in (5), as studied in [4].

We start with the (primal) augmented Lagrangian method,
that of Powell, Hestenes and Rockafellar [4]. At step k of
the overall algorithm, the Bellman iteration now depends on
external multiplier estimates λk, νk for the constraints,

min
u,y

ℓ(x, u) + Vi+1(y) +
1

2µ

∥∥∥∥[f(x, u, y) + µλk

[h(x, u) + µνk]+

]∥∥∥∥2 . (6)

The minimand is the augmented Lagrangian Lk(u, y;x, µ)
associated with the Bellman equation (3) which depends
on the current state x. This Bellman equation, just like in
standard DDP, is handled by a single (quasi)-Newton step –
by the dynamic programming principle, this backward sweep
recovers a Newton step over the entire state-control trajectory
(x,u), with respect to the augmented Lagrangian of the
initial problem (2).

For the primal-dual augmented Lagrangian, we consider a
primal-dual step which includes both (u, y) and multipliers
(λ, ν).

min
u,y,λ,ν

Lk(u, y;x, µ) +
1

2µ

∥∥∥∥[f(x, u, y) + µ(λk − λ)
[h(x, u) + µνk]+ − µν

]∥∥∥∥2 .
(7)

b) The KKT system and feedback gains: To compute
the Newton or quasi-Newton step (δu, δy, δλ, δν) in the
primal and dual variables in either (6) or (7), the following
system can be solved (using e.g. an indefinite Cholesky
factorization):

Kµ


δu
δy
δλ
δν

 = −


Qu +Quxδx
Qy +Qyxδx

f + fxδx+ µ(λl − λ)
[h+ hxδx+ µνl]+ − µν

 , (8)

where the matrix Kµ is the “KKT matrix” of the backward
sweep is

Kµ
def
=


Quu Quy f⊤

u SAh
⊤
u

Qyu Qyy f⊤
y SAh

⊤
y

fu fy −µI
SAhu SAhy −µSA

 , (9)

and SA is simply a selection matrix for the active set A of
constraints in the augmented Lagrangian method (the indices
j such as [h(x, u) + µνk]j ⩾ 0, see [9] for further details):
SA is diagonal with [SA]jj = 1 if the constraint is active
(j ∈ A), 0 otherwise.

III. EXPERIMENTAL SHOWCASE

The aim of our work is to go towards a full-fledged imple-
mentation of our method, named ProxDDP, in C++ for fast
and efficient resolution of constrained trajectory optimization
problems, as a successor to the Crocoddyl [12] software
library. For this talk, we have included two experiments from
previous works, figures 1 and 2, which show satisfactory
behaviour of the solutions to some constrained problems.

Fig. 1. UR10 reach task. The yellow spheres around the end-effector and
wrist links do not collide with the purple cylinders, and the waypoints are
reached at the specified times. Joint and torque limits (specified by the robot
URDF file) have been imposed. The no-collision constraints are described
using a closed-form expression for the distance between a sphere and a
cylinder.

Fig. 2. Illustration of the Solo-12 robot performing a jump using variational
integrator discrete dynamics from [5], at a time-step of ∆t = 30ms. These
dynamics include no Baumgarte stabilization term and work to enforce
exactly the bilateral contact constraints of the form ϕ(q) = 0.
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