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Abstract—Most computational models of language develop-
ment adopt a passive-learner view and disregard the important
role that motivation and affect play in the development of
communication. In this paper, we present a motivation-grounded,
active learning robot model of language acquisition that relies
on social interaction with a caregiver. The robot learns multiple
associations—between words and perceived objects, and with its
internal needs—allowing it to have a “meaning potential” of the
acquired language, in line with the functionalist view of language
theory. We evaluate the model experimentally and with different
levels of caregiver’s responsiveness to study the impact of external
factors on language acquisition.

I. INTRODUCTION

Affects and motivation play an important role in the de-
velopment of communication. Typical observation in infant’s
development shows that communication is used as a mean
by infant to convey functional meanings even before they
master adult’s language [1]. For example, communication can
be a way to obtain a desired object by requesting it from an
adult, or to strengthen a social bond. To give the robot this
ability to learn language in this functional way, we endow it
with a modular architecture able to learn multiple associations
grounded in internal motivations.

II. PROPOSED APPROACH AND METHOD

The overall architecture is shown on Fig.1. The formalism is
related to the sensory-motor PerAc neural architecture [2] and
consists of three modules: the motivation, visual perception
and phonological modules.

The Motivation module (fig.1.A) modulates the robot’s
internal motivation as a function of time and visual perception
(fig.3a) [3], [4], [5]. Each internal need is modeled by a
homeostatic variable that decreases over time and increases
when the need is fulfilled. The robot drive di(t) is defined as
the difference between the current homeostatic variable and its
optimal value. The robot’s motivation to satisfy a need depends
on the related drive (internal factor) and the intensity of the
stimulus (external factor) that can satisfy it [6]:

mi(t) = di(t) + di(t).si (1)

The stimulus s is estimated by the visual perception module.
The Visual perception module (fig.1.B) allows the robot
to perceive its environment. We used an online incremental
learning method, similar to Kohonen’s map [7], called SAW
(Self Adaptive Winner). In this method, when the robot detects
a new object, the extracted key point descriptors are stored in
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Fig. 1: The overall architecture consists of three modules: A. The motivation
module, B. the visual perception module and C. the phonological module.

a visual feature matrix VF as follows: each new descriptor
is compared to those already stored in VF, if the similarity is
below a fixed threshold, the most similar descriptor is replaced
by the mean of the two, otherwise the new descriptor is
recruited directly to the VF matrix.
The Phonological module (fig.1.C) of the robot is composed
of a vocabulary of two-syllable words, corresponding to 10 of
the most frequent syllables of an 8-month-old infant [8], and a
text-to-speech unit that allows the robot to vocalize its words.
Learning the associations between modules
Our model learns the associations between each pair of these
modules. The goal is for the robot to be able to say a word
when it is in a given internal state, to learn to name the objects
present in its visual field and to know which internal need each
object is able to fulfil.
The association visual perception-motivation is realized by
training a neural network - which have the VF matrix as input
- to predict the name of the detected object and which internal
need can be satisfied by it. The synaptic weights update of this
neural network follows the Widrow-Hoff rule [9].
For the second association motivation-phonological mod-
ules, we extend the RL approach proposed by [10]: in this
method, each robot’s internal needs can be satisfied with a
specific object. The robot starts by randomly producing a word
when one need outweighs the others, the caregiver -who does
not have access to the internal need of the robot- reacts to
the robot’s vocalization by selecting an object and handing
it to the robot. If the given object satisfies the robot’s need,
the motivation related to this need decreases, a reward of +1 is
given to the robot which expresses its satisfaction with a happy



Fig. 2: Experimental setup.

(a) Evolution of the robot’s motivations. A
drink was presented at t2, which increased
the motivation to drink. At times t1 and t3,
the caregiver gave the robot a toy, reducing
the motivation to discover

(b) Evolution of average reward, conver-
gence is reached after 75 interactions be-
tween the robot and the caregiver

(c) Evolution of average reward with contin-
gent and non-contingent caregivers between
the iterations n=150 and n=200

(d) Evolution of the average reward in the
case of a contiguous and a non-contiguous
caregiver

gesture, otherwise the word receives a reward of -1, which
decrease the probability of reusing the word in this context,
and the robot expresses its dissatisfaction. In RL, this problem
is formulated as a contextual multi-armed bandit problem.

III. EXPERIMENTAL SETUP AND RESULTS

To test our model, we used the humanoid robot Reachy with
the Unity simulation environment (fig.2), the robot has three
internal needs: hunger, thirst and curiosity, these needs can
be satisfied by objects present in its scene. When the robot
express its need by a word (from its vocabulary 10 words)
a human caregiver gives it one of the objects. The robot can
express its satisfaction or frustration by putting its antennae
up or down.
The average of the rewards is used as an evaluation metric (at
each time step n, it is computed on the previous 50 values).
The convergence time is defined as the number of iterations
needed to reach 90% convergence. The results were calculated
on the average of 100 repetitions of each experiment.

The results show the convergence of the moving average
reward (fig.3b). Reaching convergence means that the robot
has learned to choose consistent words that depend on its in-
ternal needs, and that the robot is understood by the caregiver,
which allows it to obtain the desired objects. Table I shows
the association between the robot’s vocabulary and the internal
needs; after learning, each need has only one word with a max
Q-value, which confirms the convergence.
Effects of the caregiver’s responses on language learning

”wada” ”naba” ”maba” ”daba” ”paba” ”bada” ”bama” ”babe” ”waba” ”wama”

”Hunger” -1 -1 2 0 -0.5 0 0 0 0 -1
”Thirst” 0 -1 -1 0 0 -1 0 0 2 0

”Curiosity” -1 -1 -1 -1 -1 -1.25 -1 2 -1 -1

TABLE I: Q-table of the association between the robot vocabulary and its
internal needs

To study the impact of the caregiver‘s responses on the robot
language learning, we focus on two aspects of responses:
contingency and contiguity. In child language learning, par-
ent responses are contingent and contiguous when they are
conceptually and temporally dependent on the child’s com-
municative actions, respectively [11]. These both aspects of
parental responses facilitate early infant language development
[11]. We model a low level of contingency by a caregiver that
chooses objects at random, regardless the robot feedback and
the pronounced word. Contiguity is modeled by a caregiver
who takes into account the temporal evolution of motivations
when making a guess. Fig 3c and 3d show that the contingency
and contiguity of the parental responses can contribute to the
stabilization and acceleration of the learning.

IV. CONCLUSION

We have presented a robot model of language learning
inspired by how children learn language through natural inter-
actions with a caregiver. The association of each word with a
need, rather than being a simple label paired with an object, is
consistent with the functionalist view of language acquisition.
Our model was validated in experiments testing the effect of
a caregiver’s responsiveness on the robot’s language learning.
The results are in line with infant studies on the influence of
parental responsiveness on language acquisition [11]. In future
work, we envisage to extend the motivational module with new
emotional and affective states, in order to increase the number
of meaningful words in the robot’s vocabulary, and to ground
the modeling of the more advanced functions of language.
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